સાબિત કરો કે : $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$
$L.H.S$ $=\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}$
$=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2}$
$=\frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2}$
$= R . H.S$
$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $
સાબિત કરો કે, $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$
કિંમત શોધો : $\tan 15^{\circ}$
જો $\theta $ અને $\phi $ એ પ્રથમ ચરણમાં આવેલ છે કે જેથી $\tan \theta = 1/7$ અને $\sin \phi = 1/\sqrt {10} $.તો
જો $x + \frac{1}{x} = 2\cos \alpha $, તો ${x^n} + \frac{1}{{{x^n}}} = $