Point $M$ moved along the circle $(x - 4)^2 + (y - 8)^2 = 20 $. Then it broke away from it and moving along a tangent to the circle, cuts the $x-$ axis at the point $(- 2, 0)$ . The co-ordinates of the point on the circle at which the moving point broke away can be :
$\left( { - \,\frac{3}{5}\,\,,\,\,\frac{{46}}{5}} \right)$
$\left( { - \,\frac{2}{5}\,\,,\,\,\frac{{44}}{5}} \right)$
$(6, 4)$
$(B)$ or $(C)$ both
Let the tangents at two points $A$ and $B$ on the circle $x ^{2}+ y ^{2}-4 x +3=0$ meet at origin $O (0,0)$. Then the area of the triangle of $OAB$ is.
Let $O$ be the origin and $OP$ and $OQ$ be the tangents to the circle $x^2+y^2-6 x+4 y+8=0$ at the point $P$ and $Q$ on it. If the circumcircle of the triangle OPQ passes through the point $\left(\alpha, \frac{1}{2}\right)$, then a value of $\alpha$ is
Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$
The line $x\cos \alpha + y\sin \alpha = p$will be a tangent to the circle ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$, if $p = $
Equation of the tangent to the circle ${x^2} + {y^2} = {a^2}$ which is perpendicular to the straight line $y = mx + c$ is