Let $O$ be the origin and $OP$ and $OQ$ be the tangents to the circle $x^2+y^2-6 x+4 y+8=0$ at the point $P$ and $Q$ on it. If the circumcircle of the triangle OPQ passes through the point $\left(\alpha, \frac{1}{2}\right)$, then a value of $\alpha$ is

  • [JEE MAIN 2023]
  • A

    $\frac{3}{2}$

  • B

    $\frac{5}{2}$

  • C

    $1$

  • D

    $-\frac{1}{2}$

Similar Questions

If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then  the value of $c$ is:

  • [JEE MAIN 2018]

The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-

A circle with centre $'P'$ is tangent to negative $x$ & $y$ axis and externally tangent to a circle with centre $(-6,0)$ and radius $2$ . What is the sum of all possible radii of the circle with centre $P$ ?

The equation of the circle having the lines $y^2 - 2y + 4x - 2xy = 0$ as its normals $\&$ passing through the point $(2 , 1)$ is :

If the line $3x + 4y - 1 = 0$ touches the circle ${(x - 1)^2} + {(y - 2)^2} = {r^2}$, then the value of $r$ will be