Out of gravitational, electromagnetic, Vander Waals, electrostatic and nuclear forces; which two are able to provide an attractive force between two neutrons
Electrostatic and gravitational
Electrostatic and nuclear
Gravitational and nuclear
Some other forces like Vander Waals
Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to
A point charge $q_1$ exerts an electric force on a second point charge $q_2$. If third charge $q_3$ is brought near, the electric force of $q_1$ exerted on $q_2$
Four charge $Q _1, Q _2, Q _3$, and $Q _4$, of same magnitude are fixed along the $x$ axis at $x =-2 a - a ,+ a$ and $+2 a$, respectively. A positive charge $q$ is placed on the positive $y$ axis at a distance $b > 0$. Four options of the signs of these charges are given in List-$I$ . The direction of the forces on the charge q is given in List-$II$ Match List-$1$ with List-$II$ and select the correct answer using the code given below the lists.$Image$
List-$I$ | List-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, all positive | $1.\quad$ $+ x$ |
$Q.$ $\quad Q_1, Q_2$ positive $Q_3, Q_4$ negative | $2.\quad$ $-x$ |
$R.$ $\quad Q_1, Q_4$ positive $Q_2, Q_3$ negative | $3.\quad$ $+ y$ |
$S.$ $\quad Q_1, Q_3$ positive $Q_2, Q_4$ negative | $4.\quad$ $-y$ |
Two small spheres each of mass $10 \,mg$ are suspended from a point by threads $0.5 \,m$ long. They are equally charged and repel each other to a distance of $0.20 \,m$. The charge on each of the sphere is $\frac{ a }{21} \times 10^{-8} \, C$. The value of $a$ will be ...... .
$\left[\right.$ Given $\left.g=10 \,ms ^{-2}\right]$
Three points charges are placed at the corners of an equilateral triangle of side $L$ as shown in the figure.