The electric field between the two spheres of a charged spherical condenser

  • A

    Is zero

  • B

    Is constant

  • C

    Increases with distance from the centre

  • D

    Decreases with distance from the centre

Similar Questions

An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius $r$. The coulomb force $\overrightarrow F $ between the two is (Where $K = \frac{1}{{4\pi {\varepsilon _0}}}$)

  • [AIPMT 2003]

Three charges $ - {q_1},\,\, + {q_2}$ and $ - {q_3}$ are placed as shown in the figure. The $x$-component of the force on $ - {q_1}$ is proportional to

  • [AIEEE 2003]

A charged particle having some mass is resting in equilibrium at a height $H$ above the centre of a uniformly charged non-conducting horizontal ring of radius $R$. The force of gravity acts downwards. The equilibrium of the particle will be stable $R$

Two point charges $3 \times 10^{-6} \,C$ and  $8 \times 10^{-6} \, C$ repel each other by a force of  $6 \times 10^{-3} \, N$. If each of them is given an additional charge $-6 \times 10^{-6} \, C$, the force between them will be

In a medium, the force of attraction between two point charges, distance $d$ apart, is $F$. What distance apart should these point charges be kept in the same medium, so that the force between them becomes $16\, F$ ?