Order of a reaction can have
$ + ve$ values
Whole number values
Fractional values
All of the above
Consider a reaction $\mathrm{aG}+\mathrm{bH} \rightarrow$ Products. When concentration of both the reactants $\mathrm{G}$ and $\mathrm{H}$ is doubled, the rate increases by eight times. However, when concentration of $\mathrm{G}$ is doubled keeping the concentration of $\mathrm{H}$ fixed, the rate is doubled. The overall order of the reaction is
The three experimental data for determine the differential rate of reaction $2 NO _{( g )}+ Cl _{2( g )} \rightarrow 2 NOCl_{( g )}$ at definate temperature. are given below.
$(a)$ Calculate order of reaction.
$(b)$ Calculate value of rate constant.
Write differential rate expression of following reaction and give its order of reaction :
$2 HI \rightarrow H _{2}+ I _{2}$
$2 NO _{( g )}+ O _{2( g )} \rightarrow 2 NO _{2( g )}$
For a chemical reaction $A \to B$ it is found that the rate of reaction doubles, when the concentration of $A$ is increased four times. The order in $A$ for this reaction is
The following data was obtained for chemical reaction given below at $975\, \mathrm{~K}$.
$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$[NO]$ $\mathrm{mol} \mathrm{L}^{-1}$ |
${H}_{2}$ $\mathrm{mol} \mathrm{L}^{-1}$ |
Rate $\mathrm{mol}L^{-1}$ $s^{-1}$ |
|
$(A)$ | $8 \times 10^{-5}$ | $8 \times 10^{-5}$ | $7 \times 10^{-9}$ |
$(B)$ | $24 \times 10^{-5}$ | $8 \times 10^{-5}$ | $2.1 \times 10^{-8}$ |
$(C)$ | $24 \times 10^{-5}$ | $32 \times 10^{-5}$ | $8.4 \times 10^{-8}$ |
The order of the reaction with respect to $\mathrm{NO}$ is ..... .