ચોરસની એક બાજુ ધન $x-$ અક્ષ સાથે લઘુકોણ $\alpha$ બનાવે છે અને તેના શિરોબિંદુઓમાંથી એક શિરોબિંદુ ઊંગમબિંદુ છે જો ચોરસના બાકીના ત્રણ શિરોબિંદુઓ $x-$ અક્ષની ઉપરની બાજુએ આવેલા છે અને તેની લંબાઇ $4$ હોય તો જે વિકર્ણ ઊંગમબિંદુમાંથી પસાર ન થાય તેનું સમીકરણ મેળવો
$(cos\, \alpha + sin\, \alpha) x + (cos\, \alpha - sin\, \alpha) y = 4$
$(cos\, \alpha + sin\, \alpha) x - (cos\, \alpha - sin\, \alpha) y = 4$
$(cos\, \alpha - sin\, \alpha) x + (cos\, \alpha + sin\, \alpha) y = 4$
$(cos\, \alpha - sin\, \alpha) x - (cos\, \alpha + sin\, \alpha) y = 4 cos\, 2\alpha$
ધારો કે બિંદુ $\mathrm{C}$ એ ત્રિકોણ કે જેના શિરોબિંદુઓ $(3,-1),(1,3)$ અને $(2,4) $ છે. જો બિંદુ $P$ એ રેખાઓ $x+3 y-1=0$ અને $3 \mathrm{x}-\mathrm{y}+1=0 $ છેદબિંદુ હોય તો બિંદુઓ $\mathrm{C}$ અને $\mathrm{P}$ માંથી પસાર થતી રેખા . . . બિંદુમાંથી પણ પસાર થાય.
અહી $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ અને $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ અને $D(1,2)$ એ સમાંતર બાજુ ચતુષ્કોણ $\mathrm{ABCD}$ ના શિરોબિંદુ છે . જો $\mathrm{AB}=\sqrt{10}$ અને બિંદુઓ $\mathrm{A}$ અને $\mathrm{C}$ એ રેખા $3 y=2 x+1$ પર હોય તો $2(\alpha+\beta+\gamma+\delta)$ ની કિમંત મેળવો.
ત્રિકોણના બે શિરોબિંદુઓ $(5, - 1)$ અને $( - 2,3)$ હોય અને લંબકેન્દ્ર ઊગમબિંદુ હોય તો ત્રીજું શિરોબિંદુ મેળવો.
રેખાઓ $x + 3y = 4$ અને $6x - 2y = 7$ સમાંતરબાજુ ચતુષ્કોણ $PQRS$ ના વિકર્ણ હોય, તો $PQRS$ શું હોય ?
રેખાઓ $y-x = 0, x +y = 0$ અને $x-k= 0$ થી બનતા ત્રિકોણનું ક્ષેત્રફળ શોધો.