ધારો કે બિંદુ $\mathrm{C}$ એ ત્રિકોણ કે જેના શિરોબિંદુઓ $(3,-1),(1,3)$ અને $(2,4) $ છે. જો બિંદુ $P$ એ રેખાઓ $x+3 y-1=0$ અને $3 \mathrm{x}-\mathrm{y}+1=0 $ છેદબિંદુ હોય તો બિંદુઓ $\mathrm{C}$ અને $\mathrm{P}$ માંથી પસાર થતી રેખા  . . . બિંદુમાંથી પણ પસાર થાય.

  • [JEE MAIN 2020]
  • A

    $(7, 6)$

  • B

    $(-9, -6)$

  • C

    $(-9, -7)$

  • D

    $(9, 7)$

Similar Questions

રેખાઓ $x + y - 4 = 0,\,$ $3x + y = 4,$ $x + 3y = 4$ થી બનતો ત્રિકોણ  . . . . પ્રકારનો બને.

  • [IIT 1983]

સમબાજુ ત્રિકોણના આધારનું સમીકરણ $x + y = 2$ હોય અને શિરોબિંદુ $(2, -1)$ હોય તો ત્રિકોણની બાજુની લંબાઇ મેળવો.

  • [IIT 1983]

સમદ્વિભુજ ત્રિકોણની બે બાજુના સમીકરણ $7x - y + 3 = 0$ અને $x + y - 3 = 0$ હોય અને ત્રિજી બાજુ બિંદુ $(1, -10)$ માંથી પસાર થાય તો ત્રિજી બાજુનું સમીકરણ મેળવો.

  • [IIT 1984]

ચોરસની એક બાજુએ $x-$ અક્ષની ઉપર આવેલ છે અને ચોરસનું એક શિરોબિંદુ ઊગમબિંદુ છે.જો ઊગમબિંદુમાંથી પસાર થતી બાજુએ ધન $x-$ અક્ષ સાથે બનાવેલ ખૂણો  $\alpha \,\,(0\; < \;\alpha \; < \;\; \frac{\pi }{4}))$ તો ઊગમબિંદુમાંથી પસાર ન થતા વિર્કણનું સમીકરણ મેળવો. (ચોરચની બાજુની લંબાઈ $a$ છે )

  • [AIEEE 2003]

Let $A \equiv (3, 2)$ અને $B \equiv (5, 1)$ છે $ABP$ એ એક સમબાજુ ત્રિકોણ છે કે જેની એક બાજુ  $AB$ ઊંગમબિંદુ થી હોય તો ત્રિકોણ $ABP$ નું લંબકેન્દ્ર મેળવો