If $\omega $ is a cube root of unity and $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, then ${\Delta ^2}$ is equal to

  • A

    $ - \omega $

  • B

    $\omega $

  • C

    $1$

  • D

    ${\omega ^2}$

Similar Questions

If the system of equations $ax + y + z = 0 , x + by + z = 0 \, \& \, x + y + cz = 0$ $(a, b, c \ne 1)$ has a non-trivial solution, then the value of $\frac{1}{{1\, - \,a}}\,\, + \,\,\frac{1}{{1\, - \,b}}\,\, + \,\,\frac{1}{{1\, - \,c}}$ is :

If $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,then

If the system of linear equations  $2 x + y - z =7$ ; $x-3 y+2 z=1$  ; $x +4 y +\delta z = k$, where $\delta, k \in R$  has infinitely many solutions, then $\delta+ k$ is equal to

  • [JEE MAIN 2022]

The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is

The sum of the real roots of the equation $\left| {\begin{array}{*{20}{c}}
x&{ - 6}&{ - 1}\\
2&{ - 3x}&{x - 3}\\
{ - 3}&{2x}&{x = 2}
\end{array}} \right| = 0$ is equal to

  • [JEE MAIN 2019]