$l$ લંબાઇ અને $k$ બળ અચળાંક ધરાવતી સ્પ્રિંગમાંથી $l /4$ લંબાઇની સ્પ્રિંગ કાપી લેતાં વધેલા ભાગનો બળ અચળાંક કેટલો થાય?
$ \frac{3}{4}K $
$ \frac{4}{3}K $
$K$
$4 K$
સ્પ્રિંગના છેડે $20$ ડાઇન બળ લગાડતાં તેની લંબાઈમાં $1\, mm$ જેટલો વધારો થાય છે, તો તેનો બળ-અચળાંક કેટલો ?
કેવી સ્પ્રિંગના દોલનો ઝડપી થશે? કડક કે મૃદુ.
$K_1$ અને $K_2$ બળઅચળાંક ઘરાવતી અલગ અલગ સ્પ્રિંગ પર $m$ દળ લટકાવતા આવર્તકાળ અનુક્રમે $t_1$ અને $t_2$ થાય છે. જો આકૃતિમાં દર્શાવ્યા પ્રમાણે સમાન દળ $m$ ને બંને સ્પ્રિંગ સાથે લટકવવામાં આવે, તો આવર્તકાળ $t$ ને કયા સંબંધ દ્વારા આપી શકાય?
આકૃતિ $(a)$ બતાવે છે કે $k$ બળ-અચળાંકવાળી એક સ્પ્રિંગના એક છેડાને દૃઢ રીતે જડેલ છે અને તેના મુક્ત છેડા સાથે $m$ દ્રવ્યમાન જોડેલ છે. મુક્ત છેડા પર લગાડવામાં આવતું બળ $F$ એ સ્પ્રિંગને ખેંચે છે. આકૃતિ $(b)$ માં આ જ સ્પ્રિંગ બંને છેડાથી મુક્ત છે અને એક દ્રવ્યમાન $m$ બંને છેડા પર જોડેલ છે. આકૃતિ $(b)$ માંની સ્પ્રિંગના દરેક છેડાને એક સમાન બળ $F$ દ્વારા ખેંચવામાં આવેલ છે.
$(a)$ આ બે કિસ્સાઓમાં સ્પ્રિંગનું મહત્તમ વિસ્તરણ કેટલું છે ?
$(b)$ જો આકૃતિ $(a)$ માંનું દ્રવ્યમાન અને આકૃતિ $(b)$ નાં બે દ્રવ્યમાનોને જો મુક્ત કરવામાં આવે તો દરેક કિસ્સામાં દોલનોનો આવર્તકાળ કેટલો થશે ?
$k$, $2k$, $4k$ અને $8k$....ધરાવતી સ્પ્રિંગને શ્રેણીમાં જોડતાં સમતુલ્ય બળ અચળાંક કેટલો થાય?