રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા સૌથી પહેલાં અથવા બીજા ક્રમે કરી ?
$S=\left\{\begin{array}{l} ABCD , ABDC , ACBD , ACDB , ADBC , ADCB , \\ BACD , BADC , BDAC , BDCA , BCAD , BCDA \\ CABD , CADB , CBDA , CBAD , CDAB , CDBA , \\ DABC , DACB , DBCA , DBAC , DCAB , DCBA \end{array}\right.$
Let $H$ be the event "she visits A either first or second"
$H=\left\{\begin{array}{r} ABCD , ABDC , ADBC , ACDB , ADBC , ADCB , \\ BACD , BADC , CABD , CADB , DABC , DACB ,\end{array}\right\}$
$So , n ( H )=12$
$P(H)=\frac{n(H)}{n(S)}$ $=\frac{12}{24}=\frac{1}{2}$
કાગળની ચાર ચબરખી પર $1, 2, 3$ અને $4$ સંખ્યાઓ લખી છે. આ ચબરખીને એક ડબામાં મૂકીને સારી રીતે મિશ્ર કરી દીધી છે. એક વ્યક્તિ ડબામાંથી પાછી મૂકયા વગર એક પછી એક બે ચબરખીઓ કાઢે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
બે પાસાઓ (એક વાદળી અને બીજો લાલ)ને ફેંકવાના પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ શોધો. વળી, આ નિદર્શાવકાશના ઘટકોની સંખ્યા શોધો.
ધારો કે જેમાં બરાબર એક અંક $7$ હોય જ તેવી $4-$અંકોની તમામ પ્રાકૃતિક સંખ્યાઓનો ગણ $A$ છે. તો યાદચ્છિક રીતે પસંદ કરેલ $A$ ના એક ઘટકને $5$ વડે ભાગતાં શેષ $2$ વધે તેની સંભાવના ..... છે.
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
ઓછામાં ઓછી $2$ છાપ મળે.
એક બોક્સમાં $10$ સારી અને $6$ ખામીવાળી વસ્તુઓ છે. તેમાંથી ગમે તે એક વસ્તુ પસંદ કરવામાં આવે તો તે સારી અથવા ખામીવાળી નીકળવાની સંભાવના કેટલી?