किसी खुले मैदान में कोई मोटर चालक एक ऐसा रास्ता अपनाता है जो प्रत्येक $500\, m$ के बाद उसके बाईं ओर $60^{\circ}$ के कोण पर मुड़ जाता है। किसी दिए मोड़ से शुरू होकर मोटर चालक का तीसरे, छठे व आठवें मोड़ पर विस्थापन बताइए। प्रत्येक स्थिति में मोटर चालक द्वारा इन मोड़ों पर तय की गई कुल पथ-लंबाई के साथ विस्थापन के परिमाण की तुलना कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The path followed by the motorist is a regular hexagon with side $500\, m$, as shown in the given figure

Let the motorist start from point $P$. The motorist takes the third turn at $S$.

$\therefore$ Magnitude of displacement $= PS = PV + VS =500+500=1000 \,m$

Total path length $= PQ + QR + RS =500+500+500=1500\, m$

The motorist takes the sixth turn at point $P$, which is the starting point.

$\therefore$ Magnitude of displacement $=0$ Total path length $= PQ + QR + RS + ST + TU + UP$

$=500+500+500+500+500+500=3000 \,m$

The motorist takes the eight turn at point $R$

$\therefore$ Magnitude of displacement $= PR$

$=\sqrt{ PQ ^{2}+ QR ^{2}+2( PQ ) \cdot( QR ) \cos 60^{\circ}}$

$=\sqrt{500^{2}+500^{2}+\left(2 \times 500 \times 500 \times \cos 60^{\circ}\right)}$

$=\sqrt{250000+250000+\left(500000 \times \frac{1}{2}\right)}$

$=866.03\, m$

$\beta=\tan ^{-1}\left(\frac{500 \sin 60^{\circ}}{500+500 \cos 60^{\circ}}\right)=30^{\circ}$

Therefore, the magnitude of displacement is $866.03\, m$ at an angle of $30^{\circ}$ with $PR$. Total path length $=$ Circumference of the hexagon $+ PQ + QR$ $=6 \times 500+500+500=4000\, m$

The magnitude of displacement and the total path length corresponding to the required turns is shown in the given table

Turn  Magnitude of displacement Total path length
Third  $1000 $ $1500 $
Sixth  $0 $ $3000 $
Eighth $866.03 ; 30^{\circ}$ $4000$
885-s20

Similar Questions

दो बलों $\overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला बल $\overrightarrow{ R }$ ऐसा है कि $|\overrightarrow{ R }|=|\overrightarrow{ P }|$. यदि $2 \overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला परिणामी बल $\overrightarrow{ Q }$ से $\theta$ कोण (डिग्री में) बनाता हो तो $\theta$ का मान होगा |

  • [JEE MAIN 2020]

दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ का परिणामी सदिश $\mathop A\limits^ \to $ के लम्बवत् है तथा इसका परिमाण सदिश $\mathop B\limits^ \to $ के परिमाण का आधा है। $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ....... $^o$ होगा

यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी

सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा

  • [AIPMT 1988]

$\vec{a}$ से $\vec{f}$ तक छ: सदिशों के परिमाणों और दिशाओं को, दिये गये चित्र (आरेख) में प्रदशिर्शित किया गया है। निम्निलित में से कौन सा कथन इनके लिये सत्य (सही) है?

  • [AIPMT 2010]