સમીકરણ $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ ના $\left[ {0,\frac{\pi }{3}} \right]$ માં કેટલા ઉકેલો મળે?
$0$
$1$
$2$
$3$
જો $\theta $ અને $\phi $ એ લઘુકોણ છે કે જે સમીકરણ $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3}$ નું સમાધાન કરે છે તો $\theta + \phi \in $ . . .
સમીકરણ $1 + {\sin ^4}\,x = {\cos ^2}\,3x$ ના $x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ માં ઉકેલો ની સંખ્યા મેળવો
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, તો $\sin \left( {\theta + \frac{\pi }{4}} \right) = . . . .$
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$