A famous relation in physics relates 'moving mass' $m$ to the 'rest mass' $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c .$ (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant $c$. He writes:
$m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$
Guess where to put the missing $c$
Given the relation, $m=\frac{m_{0}}{\left(1-v^{2}\right)^{\frac{1}{2}}}$
Dimension of $m= M ^{1} L ^{0} T ^{0}$
Dimension of $m_{0}= M ^{1} L ^{0} T ^{0}$
Dimension of $v= M ^{0} L ^{1} T ^{-1}$
Dimension of $v^{2}= M ^{0} L ^{2} T ^{-2}$
Dimension of $c= M ^{0} L ^{1} T ^{-1}$
The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S.
This is only possible when the factor, $\left(1-v^{2}\right)^{1 / 2}$ is dimensionless i.e., $\left(1-v^{2}\right)$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2} .$
Hence, the correct relation is
$m=\frac{m_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$
Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.
The velocity $v$ (in $cm/\sec $) of a particle is given in terms of time $t$ (in sec) by the relation $v = at + \frac{b}{{t + c}}$ ; the dimensions of $a,\,b$ and $c$ are
A quantity $f$ is given by $f=\sqrt{\frac{{hc}^{5}}{{G}}}$ where $c$ is speed of light, $G$ universal gravitational constant and $h$ is the Planck's constant. Dimension of $f$ is that of
What is dimensional analysis ? Write limitation of dimensional analysis.