If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{3}$
$n\pi + {( - 1)^n}\frac{\pi }{3} - \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{3} + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{3}$
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to
If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is
Statement $-1:$ The number of common solutions of the trigonometric equations $2\,sin^2\,\theta - cos\,2\theta = 0$ and $2 \,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, 2\pi ]$ is two.
Statement $-2:$ The number of solutions of the equation, $2\,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, \pi ]$ is two.
If $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ then $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$