Examine whether the following statements are true or false :

$\{ a\}  \in \{ a,b,c\} $

Vedclass pdf generator app on play store
Vedclass iOS app on app store

False. The element of $\{a, b, c\}$ are $a, b,$ c. Therefore, $\{a\} \subset\{a, b, c\}$

Similar Questions

The number of proper subsets of the set $\{1, 2, 3\}$ is

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

$(i)$ $\{1,2,3,6\}$ $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ 
$(ii)$ $\{2,3\}$ $(b)$ $\{ x:x$ is an odd natural number less than $10\} $
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ $(c)$ $\{ x:x$ is natural number and divisor of $6\} $
$(iv)$ $\{1,3,5,7,9\}$ $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $

Write the following intervals in set-builder form :

$\left[ { - 23,5} \right)$

$A = \{ x:x \ne x\} $ represents

The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is