Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:
$(i)$ $\{ P,R,I,N,C,A,L\} $ | $(a)$ $\{ x:x$ is a positive integer and is adivisor of $18\} $ |
$(ii)$ $\{ \,0\,\} $ | $(b)$ $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $ |
$(iii)$ $\{ 1,2,3,6,9,18\} $ | $(c)$ $\{ x:x$ is an integer and $x + 1 = 1\} $ |
$(iv)$ $\{ 3, - 3\} $ | $(d)$ $\{ x:x$ is aletter of the word $PRINCIPAL\} $ |
State whether each of the following set is finite or infinite :
The set of letters in the English alphabet
For an integer $n$ let $S_n=\{n+1, n+2, \ldots \ldots, n+18\}$. Which of the following is true for all $n \geq 10$ ?
In the following state whether $A=B$ or not :
$A=\{a, b, c, d\} ; B=\{d, c, b, a\}$
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is an even natural mumber $\} \ldots \{ x:x$ is an integer $\} $