Consider the sets

$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$

Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:

$A \ldots C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A \subset C$ as $1,3 \in A$ also belongs to $C$

Similar Questions

Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form:

$(i)$  $\{ P,R,I,N,C,A,L\} $ $(a)$  $\{ x:x$ is a positive integer and is adivisor of $18\} $
$(ii)$  $\{ \,0\,\} $ $(b)$  $\{ x:x$ is an integer and ${x^2} - 9 = 0\} $
$(iii)$  $\{ 1,2,3,6,9,18\} $ $(c)$  $\{ x:x$ is an integer and $x + 1 = 1\} $
$(iv)$  $\{ 3, - 3\} $ $(d)$  $\{ x:x$ is aletter of the word $PRINCIPAL\} $

 

State whether each of the following set is finite or infinite :

The set of letters in the English alphabet

For an integer $n$ let $S_n=\{n+1, n+2, \ldots \ldots, n+18\}$. Which of the following is true for all $n \geq 10$ ?

  • [KVPY 2013]

In the following state whether $A=B$ or not :

$A=\{a, b, c, d\} ; B=\{d, c, b, a\}$

Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:

$\{ x:x$ is an even natural mumber $\}  \ldots \{ x:x$ is an integer $\} $