Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :

  • [JEE MAIN 2024]
  • A

    $182$

  • B

     $217$

  • C

    $195$

  • D

     $201$

Similar Questions

The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :

  • [JEE MAIN 2024]

If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is

  • [KVPY 2010]

If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$

The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$

  • [JEE MAIN 2021]

Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is