Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is
$5050$
$-5050$
$-5066$
$-5068$
The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is
The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -
Let $p, q$ and $r$ be real numbers $(p \ne q,r \ne 0),$ such that the roots of the equation $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to .
Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?
$I$. It has at least one negative root.
$II$. It has at least one positive root.
$III$. Both its roots are real.
Let $p(x)=x^2-5 x+a$ and $q(x)=x^2-3 x+b$, where $a$ and $b$ are positive integers. Suppose HCF $(p(x), q(x))=x-1$ and $k(x)=1 cm (p(x), q(x))$ If the coefficient of the highest degree term of $k(x)$ is 1 , then sum of the roots of $(x-1)+k(x)$ is