Let the number of elements in sets $A$ and $B$ be five and two respectively. Then the number of subsets of $A \times B$ each having at least $3$ and at most $6$ element is :
$792$
$752$
$782$
$772$
The number of ways in which an examiner can assign $30$ marks to $8$ questions, giving not less than $2$ marks to any question, is
Total number of $3$ letter words that can be formed from the letters of the word $'SAHARANPUR'$ is equal to
Words of length $10$ are formed using the letters, $A, B, C, D, E, F, G, H, I, J$. Let $x$ be the number of such words where no letter is repeated ; and let $y$ be the number of such words where exactly one letter is repeated twice and no other letter is repeated. Then, $\frac{y}{9 x}=$
A man $X$ has $7$ friends, $4$ of them are ladies and $3$ are men. His wife $Y$ also has $7$ friends, $3$ of them are ladies and $4$ are men. Assume $X$ and $Y$ have no comman friends. Then the total number of ways in which $X$ and $Y$ together can throw a party inviting $3$ ladies and $3$ men, so that $3$ friends of each of $X$ and $Y$ are in this party is :
The number of ways in which any four letters can be selected from the word ‘$CORGOO$’ is