Words of length $10$ are formed using the letters, $A, B, C, D, E, F, G, H, I, J$. Let $x$ be the number of such words where no letter is repeated ; and let $y$ be the number of such words where exactly one letter is repeated twice and no other letter is repeated. Then, $\frac{y}{9 x}=$
$5$
$4$
$8$
$9$
What is the number of ways of choosing $4$ cards from a pack of $52$ playing cards? In how many of these
four cards are of the same suit,
The set $S = \left\{ {1,2,3, \ldots ,12} \right\}$ is to be partitioned into three sets $A,\,B,\, C$ of equal size . Thus $A \cup B \cup C = S$ અને $A \cap B = B \cap C = C \cap A = \emptyset $ . The number of ways to partition $S$ is
Number of integral solutions to the equation $x+y+z=21$, where $x \geq 1, y \geq 3, z \geq 4$, is equal to $..........$.
If ${ }^{n} P_{r}={ }^{n} P_{r+1}$ and ${ }^{n} C_{r}={ }^{n} C_{r-1}$, then the value of $r$ is equal to: