Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to.......

  • [JEE MAIN 2022]
  • A

    $916$

  • B

    $816$

  • C

    $856$

  • D

    $86$

Similar Questions

If the line $3x - 4y = \lambda $ touches the circle ${x^2} + {y^2} - 4x - 8y - 5 = 0$, then $\lambda $ is equal to

If the equation of one tangent to the circle with centre at $(2, -1)$ from the origin is $3x + y = 0$, then the equation of the other tangent through the origin is

If the straight line $ax + by = 2;a,b \ne 0$ touches the circle ${x^2} + {y^2} - 2x = 3$ and is normal to the circle ${x^2} + {y^2} - 4y = 6$, then the values of a and b are respectively

Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is

  • [JEE MAIN 2016]

In the figure, $A B C D$ is a unit square. A circle is drawn with centre $O$ on the extended line $C D$ and passing through $A$. If the diagonal $A C$ is tangent to the circle, then the area of the shaded region is

  • [KVPY 2017]