In the figure, $A B C D$ is a unit square. A circle is drawn with centre $O$ on the extended line $C D$ and passing through $A$. If the diagonal $A C$ is tangent to the circle, then the area of the shaded region is
$\frac{9-\pi}{6}$
$\frac{8-\pi}{6}$
$\frac{7-\pi}{4}$
$\frac{6-\pi}{4}$
The equation of pair of tangents to the circle ${x^2} + {y^2} - 2x + 4y + 3 = 0$ from $(6, - 5)$, is
A tangent to the circle ${x^2} + {y^2} = 5$at the point $(1,-2)$ the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$
A circle $C_{1}$ passes through the origin $O$ and has diameter $4$ on the positive $x$-axis. The line $y =2 x$ gives a chord $OA$ of a circle $C _{1}$. Let $C _{2}$ be the circle with $OA$ as a diameter. If the tangent to $C _{2}$ at the point $A$ meets the $x$-axis at $P$ and $y$-axis at $Q$, then $QA : AP$ is equal to.
The lines $y - y_1 = m (x - x_1) \pm a \,\sqrt {1\,\, + \,\,{m^2}} $ are tangents to the same circle . The radius of the circle is :
Pair of tangents are drawn from every point on the line $3x + 4y = 12$ on the circle $x^2 + y^2 = 4$. Their variable chord of contact always passes through a fixed point whose co-ordinates are