Let the function $f :[0,2] \rightarrow R$ be defined as

$f(x)=\left\{\begin{array}{cc}e^{\min \left[x^2, x-[x]\right\}}, & x \in[0,1) \\e^{\left[x-\log _e x\right]}, & x \in[1,2]\end{array}\right.$

where [t] denotes the greatest integer less than or equal to $t$. Then the value of the integral $\int \limits_0^2 x f(x) d x$ is

  • [JEE MAIN 2023]
  • A

    $2 e -1$

  • B

    $1+\frac{3 e }{2}$

  • C

    $2 e -\frac{1}{2}$

  • D

    $(e-1)\left(e^2+\frac{1}{2}\right)$

Similar Questions

If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to

  • [AIEEE 2012]

The true solution set of the inequality,$\sqrt{5x-6-x^2}+\left( \frac{\pi }{2}\int\limits_{0}^{x}{dz} \right)>x\int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}$ is:

Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1, \mathrm{f}(1))$ and $(3, \mathrm{f}(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive $x$-axis. If $27 \int_1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3} \quad$ where $\alpha, \quad \beta$ are integers, then the value of $\alpha+\beta$ equals

  • [JEE MAIN 2024]

The number of continuous functions $f :\left[0, \frac{3}{2}\right] \rightarrow(0, \infty)$ satisfying the equation $4 \int \limits_0^{3 / 2} f(x) d x+125 \int \limits_0^{3 / 2} \frac{d x}{\sqrt{f(x)+x^2}}=108$ is

  • [KVPY 2021]

A quadratic polynomial $P(x)$ satisfies the conditions, $P(0) = P(1) = 0\, \&\,\int\limits_0^1 {}  P(x) dx = 1$. The leading coefficient of the quadratic polynomial is :