Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $x$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to $...........$.
$9$
$8$
$7$
$6$
If the line $y = mx + c$touches the ellipse $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, then $c = $
The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -
Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$
A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.
The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points