The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points

  • [IIT 2009]
  • A

    $\left( \pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right)$

  • B

    $\left( \pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$

  • C

    $\left( \pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$

  • D

    $\left( \pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$

Similar Questions

The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is

  • [IIT 1996]

The eccentricity of the ellipse $ (x - 3)^2 + (y - 4)^2 =$ $\frac{{{y^2}}}{9}\,$  is

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is

  • [AIEEE 2003]

Let $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If $\mathrm{e}$ and $1$ denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a}+\frac{y^2}{b}=1$, then $8 e^2+1^2$ is equal to.

  • [JEE MAIN 2024]