Let the tangent and normal at the point $(3 \sqrt{3}, 1)$ on the ellipse $\frac{x^2}{36}+\frac{y^2}{4}=1$ meet the $y$-axis at the points $A$ and $B$ respectively. Let the circle $C$ be drawn taking $A B$ as a diameter and the line $x =2 \sqrt{5}$ intersect $C$ at the points $P$ and $Q$. If the tangents at the points $P$ and $Q$ on the circle intersect at the point $(\alpha, \beta)$, then $\alpha^2-\beta^2$ is equal to
$\frac{314}{5}$
$\frac{304}{5}$
$60$
$61$
The area (in sq, units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ is :
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$
If the points of intersection of two distinct conics $x^2+y^2=4 b$ and $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ lie on the curve $y^2=3 x^2$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is............................
Find the equation for the ellipse that satisfies the given conditions: $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.
The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are