Let $P(2,2)$ be a point on an ellipse whose foci are $(5,2)$ and $(2,6)$, then eccentricity of ellipse is 

  • A

    $\frac{2}{3}$

  • B

    $\frac{5}{7}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{3}{4}$

Similar Questions

A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}}$ + $\frac{{{y^2}}}{{32}}$ $= 1$  intersects the major and minor axes in points $A$ and $ B$  respectively. If $C$  is the centre of the ellipse then the area of the triangle $ ABC$  is : .............. $\mathrm{sq. \,units}$

Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$

The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.

  • [JEE MAIN 2022]

Let $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $E_i$ 's are constructed such that their centres and eccentricities are same as that of $E _1$, and the length of minor axis of $E _{ i }$ is the length of major axis of $E _{ i +1}( i \geq 1)$. If $A _{ i }$ is the area of the ellipse $E _{ i }$, then $\frac{5}{\pi}\left(\sum_{ i =1}^{\infty} A _{ i }\right)$, is equal to _____

  • [JEE MAIN 2025]

The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is

  • [JEE MAIN 2017]