A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}}$ + $\frac{{{y^2}}}{{32}}$ $= 1$  intersects the major and minor axes in points $A$ and $ B$  respectively. If $C$  is the centre of the ellipse then the area of the triangle $ ABC$  is : .............. $\mathrm{sq. \,units}$

  • A

    $12$

  • B

    $24 $

  • C

    $36$

  • D

    $48 $

Similar Questions

The distance between the foci of the ellipse $3{x^2} + 4{y^2} = 48$ is

If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:

  • [JEE MAIN 2023]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$

If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2024]

For some $\theta \in\left(0, \frac{\pi}{2}\right),$ if the eccentricity of the hyperbola, $x^{2}-y^{2} \sec ^{2} \theta=10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^{2} \sec ^{2} \theta+y^{2}=5,$ then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2020]