If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
$x^2+7 x+12=0$
$x^2+3 x-4=0$
$x^2+2 x-3=0$
$x ^2+ x -12=0$
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
Given $z$ is a complex number such that $|z| < 2,$ then the maximum value of $|iz + 6 -8i|$ is equal to-
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is