If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\alpha=a+i b$ and $\beta=x+i y$

It is given that, $|\beta|=1$

$\therefore \sqrt{x^{2}+y^{2}}=1$

$\Rightarrow x^{2}+y^{2}=1$......$(i)$

$\left|\frac{\beta-\alpha}{1-\bar{\alpha}}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right|$

$=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right|$

$=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right|$

$=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right| \quad\left[\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right]$

$=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}}$

$=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}}$

$=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}$

$=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}} \quad[\text { Using }(1)]$

$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$

Similar Questions

The number of solutions of the equation ${z^2} + \bar z = 0$ is

If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to

  • [AIEEE 2005]

Let $z =1+ i$ and $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$. Then $\frac{12}{\pi}$ $\arg \left(z_1\right)$ is equal to $..........$.

  • [JEE MAIN 2023]

If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is

  • [JEE MAIN 2024]

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$