Let $a,b,c$ be positive real numbers. The following system of equations in $x, y$  and $ z $ $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ has

  • [IIT 1995]
  • A

    No solution

  • B

    Unique solution

  • C

    Infinitely many solutions

  • D

    Finitely many solutions

Similar Questions

Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations

$x+2 y+z=7$

$x+\alpha z=11$

$2 x-3 y+\beta z=\gamma$

Match each entry in List - $I$ to the correct entries in List-$II$

List - $I$ List - $II$
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has ($1$) a unique solution
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has ($2$) no solution

($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$,

then the system has

($3$) infinitely many solutions
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has ($4$) $x=11, y=-2$ and $z=0$ as a solution
  ($5$) $x=-15, y=4$ and $z=0$ as a solution

Then the system has

  • [IIT 2023]

If the system of equations

$ 2 x+7 y+\lambda z=3 $

$ 3 x+2 y+5 z=4 $

$ x+\mu y+32 z=-1$

has infinitely many solutions, then $(\lambda-\mu)$ is equal to $\qquad$

  • [JEE MAIN 2024]

If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is

  • [JEE MAIN 2013]

The least value of the product $xyz$ for which the determinant $\left| {\begin{array}{*{20}{c}}
  x&1&1 \\ 
  1&y&1 \\ 
  1&1&z 
\end{array}} \right|$ is non-negative, is 

  • [JEE MAIN 2015]

If $a \ne b \ne c,$ the value of $x$ which satisfies the equation $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$, is