જો સમીકરણ સંહિત
$ 2 x+7 y+\lambda z=3 $
$ 3 x+2 y+5 z=4 $
$ x+\mu y+32 z=-1$
ને અસંખ્ય ઉકેલો હોય, તો $(\lambda-\mu)=$...........
$38$
$39$
$34$
$15$
જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે $det (A)$ ની કિમંત મેળવો.
નિશ્ચાયકનો ઉપયોગ કરી $(3, 1)$ અને $(9, 3)$ ને જોડતી રેખાનું સમીકરણ શોધો.
ધારો કે $P $ અને $Q $ એ $3×3$ શ્રેણિક છે. જયાં $P \ne Q$. જો ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ તો $\det \left( {{P^2} + {Q^2}} \right)$ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $
જો ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$ તો $x =$