ધારો કે $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots n$ પદો સુધી. જો પ્રથમ પદ $- p$ તથા સામાન્ય તફાવત $p$ હોય તવી એક સમાંતર શ્રેણી $(A.P.)$ નાં પ્રથમ છ પદોનો સરવાળો $\sqrt{2026 S_{2025}}$ હોય, તો સમાંતર શ્રેણીના $20^{\text {th }}$ માં અને $15^{\text {th }}$ મા પદોનો નિરપેક્ષ તફાવત_________છે.

  • [JEE MAIN 2025]
  • A
    $25$
  • B
    $90$
  • C
    $20$
  • D
    $45$

Similar Questions

જો સમાંતર શ્રેણીનું પ્રથમ પદ $3$ છે અને પ્રથમ ચાર પદોનો સરવાળો એ તેના પછીના ચાર પદોના સરવાળા કરતાં $\frac{1}{5}$ ગણા છે તો પ્રથમ $20$ પદોનો સરવાળો મેળવો.

  • [JEE MAIN 2025]

કાટકોણ ત્રિકોણની બાજુઓનાં માપ સમાંતર શ્રેણીમાં હોય, તો તેઓ......... ના પ્રમાણમાં છે.

જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?

એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.

શ્રેણી $3 +7 + 1 1 + 15+ ... ......$અને $1 +6+ 11 + 16+ ......$ના પ્રથમ $20$ સામાન્ય પદોનો સરવાળો મેળવો. 

  • [JEE MAIN 2014]