माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है। यदि $z$ एक ऐसी शून्येतर ($non-zero$) सम्मिश्र संख्या है जिसके लिए
$(\bar{z})^2+\frac{1}{z^2}$ के वास्तविक एवं काल्पनिक दोनों भाग (both real and imaginary parts) पूर्णांक (integers) हैं, तब निम्न में से कौन सा (से) $|z|$ के संभावित मान है (हैं) ?
$\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$
यदि $z$ एक सम्मिश्र संख्या हो, तो $|z| + |z - 1|$ का न्यूनतम मान है
यदि$z$ एक सम्मिश्र संख्या हो, तो निम्न में से कौन सा सम्बन्ध सत्य नहीं है
यदि समुच्चय $\left\{\operatorname{Re}\left(\frac{\mathrm{z}-\overline{\mathrm{z}}+\mathrm{z} \overline{\mathrm{z}}}{2-3 \mathrm{z}+5 \overline{\mathrm{z}}}\right): \mathrm{z} \in \mathbb{C}, \operatorname{Re}(\mathrm{z})=3\right\}$ अंतराल $(\alpha, \beta]$ के बराबर है, तो $24(\beta-\alpha)$ का मान है:
यदि $z$ एक सम्मिश्र संख्या हो, तो $(\overline {{z^{ - 1}}} )(\overline z ) = $
यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो