Let $Z$ and $W$ be complex numbers such that $\left| Z \right| = \left| W \right|,$ and arg $Z$ denotes the principal argument of $Z.$

Statement $1:$ If arg $Z+$ arg $W = \pi ,$ then $Z = -\overline W $.

Statement $2:$ $\left| Z \right| = \left| W \right|,$ implies arg $Z-$ arg $\overline W = \pi .$

  • [AIEEE 2012]
  • A

    Statement $1$ is true, Statement $2$ is false.

  • B

    Statement $1$ is true, Statement $2$ is true, Statement $2$ is a correct explanation for Statement $1$

  • C

    Statement $1$ is true, Statement $2$ is true, Statement $2$ is not a correct explanation for Statement $1.$

  • D

    Statement $1$ is false, Statement $2$ is true

Similar Questions

If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then

The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are

Let $\mathrm{z}$ be a complex number such that $|\mathrm{z}+2|=1$ and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $|\operatorname{Re}(\overline{z+2})|$ is :

  • [JEE MAIN 2024]

$z_1$ and $z_2$ are two complex numbers such that $|z_1 + z_2|$ = $1$ and $\left| {z_1^2 + z_2^2} \right|$ = $25$ , then minimum value of $\left| {z_1^3 + z_2^3} \right|$ is

Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that