Let $V =\{a, e, i, o, u\}$ and $B =\{a, i, k, u\} .$ Find $V - B$ and $B - V$
We have, $V - B =\{e, o\},$ since the elements $e, o$ belong to $V$ but not to $B$ and $B - V =\{k\},$ since the element $k$ belongs to $B$ but not to $V$
We note that $V - B \neq B$ - $V$. Using the setbuilder notation, we can rewrite the definition of difference as
$A - B = \{ x:x \in A$ and $x \notin B\} $
The difference of two sets $A$ and $B$ can be represented by Venn diagram as shown in (Fig)
The shaded portion represents the difference of the two sets $A$ and $B$
If $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ then $(A \cup B) \cap C$ is
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-A$
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X-Y$
Let $A =\{1,2,3,4,5,6,7\}$ and $B =\{3,6,7,9\}$. Then the number of elements in the set $\{ C \subseteq A : C \cap B \neq \phi\}$ is