Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\varnothing$
Let $A=\{0,1\}, B=\{1,2\},$ and $C=\{2,0\}$
Accordingly, $A \cap B=\{1\}, B \cap C=\{2\},$ and $A \cap C=\{0\}$
$\therefore A \cap B, B \cap C,$ and $A \cap C$ are non-empty.
Howerer, $A \cap B \cap C=\varnothing$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup D$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$D-A$
If $A, B, C$ be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then
The shaded region in given figure is-
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$