Let $A = \{a, b, c\}, B = \{b, c, d\}, C = \{a, b, d, e\},$ then $A \cap (B \cup C)$ is
$\{a, b, c\}$
$\{b, c, d\}$
$\{a, b, d, e\}$
$\{e\}$
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$Y-X$
If $A$ and $B$ are two sets then $(A -B) \cup (B -A) \cup (A \cap B)$ is equal to
If $n(A) = 3$ and $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cap B$ is equal to
If $A, B$ and $C$ are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$ then
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup D} \right)$