If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R :$ Set of real numbers

$Q:$ Set of rational numbers

Therefore, $R-Q$ is a set of irrational number.

Similar Questions

Which of the following pairs of sets are disjoint 

$\{1,2,3,4\}$ and $\{ x:x$ is a natural number and $4\, \le \,x\, \le \,6\} $

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$B \cap D$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap \left( {B \cup C} \right)$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap C$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-B$