If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R :$ Set of real numbers

$Q:$ Set of rational numbers

Therefore, $R-Q$ is a set of irrational number.

Similar Questions

Let $A = \{a, b, c\}, B = \{b, c, d\}, C = \{a, b, d, e\},$ then $A \cap (B \cup C)$ is

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$B \cup D$

If $A = \{x : x$ is a multiple of $4\}$ and $B = \{x : x$ is a multiple of $6\}$ then $A \cap B$ consists of all multiples of

Let $A =\{1,2,3,4,5,6,7\}$ and $B =\{3,6,7,9\}$. Then the number of elements in the set $\{ C \subseteq A : C \cap B \neq \phi\}$ is

  • [JEE MAIN 2022]

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then