If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to

  • A

    $3$

  • B

    $9$

  • C

    $6$

  • D

    None of these

Similar Questions

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$C-D$

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cup(A \cap B)=A$

Find the union of each of the following pairs of sets :

$A=\{a, e, i, o, u\} B=\{a, b, c\}$

If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $