ધારો કે $\quad S =\left\{ M =\left[ a _{ ij }\right], a _{ ij } \in\{0,1,2\}, 1 \leq i , j \leq 2\right\}$ એક નિદર્શાવકાશ છે અને $A=\{M \in S: ~ M$ વ્યસ્ત સંપન્ન છે $\}$ એક ઘટના છે. તો $P(A)=........$
$\frac{50}{81}$
$\frac{47}{81}$
$\frac{49}{81}$
$\frac{16}{27}$
એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
$6$ થી નાની સંખ્યા આવે.
જો $E$ અને $F$ બે સ્વતંત્ર ઘટના છે કે જેથી $E$ અને $F$ બંને બને તેની સંભાવના $\frac{1}{12}$ થાય અને $E$ કે $F$ પૈકી એકપણ ન બને તેની સંભાવના $\frac{1}{2}$ હોય તો $\frac{{P(E)}}{{P\left( F \right)}}$ ની કિમંત મેળવો.
બે પાસાઓ ફેંકવામાં આવે છે અને પાસાઓ પર મળતી સંખ્યાઓનો સરવાળો લખવામાં આવે છે. ચાલો હવે આપણે આ પ્રયોગ સાથે સંબંધિત નીચે આપેલ ઘટનાઓ વિશે વિચાર કરીએ :
$A:$ “પ્રાપ્ત સરવાળો યુગ્મ સંખ્યા છે
$B:$ “પ્રાપ્ત સરવાળો $3$ નો ગુણક છે'
$c:$ “પ્રાપ્ત સરવાળો $4$ કરતાં નાનો છે?
$D:$ ‘પ્રાપ્ત સરવાળો $11$ કરતાં મોટો છે”
આ ઘટનાઓમાંથી કઈ જોડની ઘટનાઓ પરસ્પર નિવારક છે ?
એક ડબામાં $1$ લાલ અને $3$ સમાન સફેદ દડા રાખ્યા છે. બે દડા એક પછી એક પાછા મૂક્યા વગર ડબામાંથી યાદચ્છિક રીતે કાઢવામાં આવે છે.આ પ્રયોગનો નિદર્શાવકાશ લખો.
જો $E$ અને $F$ એ ઘટનાઓ છે કે જેથી $P\,(E) \le P\,(F)$ અને $P\,(E \cap F) > 0,$ તો . . .