ધારોકે ઉગમબિંદુ છે તથા $OP$ અને $OQ$ એ વર્તુળ $x^2+y^2-6 x+4 y+8=0$ પરના બિંદુઓ $P$ અને $Q$ પરના વર્તુળના સ્પર્શકો છે.જો ત્રિકોણ $OPQ$ નું પરિવૃત્તએ બિંદુ $\left(\alpha, \frac{1}{2}\right)$ માંથી પસાર થાય, તો $\alpha$ નું મૂલ્ય $.........$ છે.
$\frac{3}{2}$
$\frac{5}{2}$
$1$
$-\frac{1}{2}$
ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ $C$, નો સ્પર્શક હોય તો $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે
બિંદુ $P (-3,2), Q (9,10)$ અને$ R (a, 4)$ એ $PR$ વ્યાસ વાળા વર્તુળ $C$ પર આવેલ છે. બિંદુુ $Q$ અને $R$ પર ના $C$ ના સ્પર્શકો બિંદુ $S$ માં કાપે છે. જો $S$ એ રેખા $2 x-k y=1$ પર આવેલ હોય, તો $k=.........$
જો વર્તુળ $x^{2}+y^{2}=25$ નો બિંદુ $R (3,4)$ આગળનો સ્પર્શકએ $x$ -અક્ષ અને $y$ -અક્ષને અનુક્રમે બિંદુ $P$ અને $Q$ આગળ છેદે છે અને જો $r$ એ ઉગમબિંદુ કેન્દ્ર અને જેનું કેન્દ્ર ત્રિકોણ $OPQ$ નું અંત:કેન્દ્ર હોય તેવા વર્તુળની ત્રિજ્યા છે તો $r ^{2}$ મેળવો.
બિંદુ $ (17, 7)$ માંથી વર્તૂળ $ x^2 + y^2 = 169 $ પર સ્પર્શકો દોર્યો
વિધાન $- 1 :$ આ સ્પર્શકો પરસ્પર લંબ છે.
વિધાન $- 2 :$ વર્તૂળ $ x^2 + y^2 = 338$ પરના દરેક બિંદુએથી આપેલ વર્તુળ પર લંબ સ્પર્શકો દોરી શકાય.
વર્તૂળ કે જેની ત્રિજયા $r$ છે અને વ્યાસ $PR$ ના અત્યબિંદુ પર દોરવામાં આવેલ સ્પર્શકો $PQ$ અને $RS$ છે. જો $PS$ અને $RQ$ એ વર્તૂળપરના બિંદુ $X$ માં છેદે છે , તો $2r$ મેળવો.