If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$  $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x =  \ -1$ is 

  • A

    $0$

  • B

    $-1$

  • C

    $1$

  • D

    $e$

Similar Questions

If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then 

Let $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ where the function $f$ satisfies $f(x + y) = f(x) f(y)$ for all natural numbers $x, y$ and $f(1) = 2.$ Then the natural number $‘ a '$ is

  • [JEE MAIN 2019]

Period of $f(x) = nx + n - [nx + n]$, $n \in N$

where [ ] denotes the greatest integer function is :

Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................

  • [JEE MAIN 2024]

If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is