Let $f ( x )=2 x ^{ n }+\lambda, \lambda \in R , n \in N$, and $f (4)=133$, $f(5)=255$. Then the sum of all the positive integer divisors of $( f (3)- f (2))$ is
$61$
$60$
$58$
$59$
If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$
The domain of the derivative of the function $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ is
Greatest value of the function, $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ is
Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$