Greatest value of the function, $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ is
$1$
$3/2$
$2/3$
$0$
The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.
Which of the following statements are true?
$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$
$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$
$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$
$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.
Which of the following is correct
If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is
Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to
Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-