Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

  • [KVPY 2009]
  • A

    $1$

  • B

    $-1$

  • C

    $2$

  • D

    $-2$

Similar Questions

If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be

If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is

Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?

  • [KVPY 2017]

The number ${\log _{20}}3$  lies in

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then