Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to
$2$
$0$
$-2$
$-4$
Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is
Let $R =\{ a , b , c , d , e \}$ and $S =\{1,2,3,4\}$. Total number of onto function $f: R \rightarrow S$ such that $f(a) \neq$ 1 , is equal to $.............$.
If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to
Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by
$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$. If the composition of $f, \underbrace{(f \circ f \circ f \circ \ldots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to....................
If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is