Let $R =\{ a , b , c , d , e \}$ and $S =\{1,2,3,4\}$. Total number of onto function $f: R \rightarrow S$ such that $f(a) \neq$ 1 , is equal to $.............$.
$180$
$170$
$160$
$150$
Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then
The domain of the function
$f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} \text { is }$
Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.
The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-