$A B C D$ एक वर्ग है जिसकी भुजा की लंबाई $1$ है । भुजा $A D, B C, A B, C D$ के आंतरिक चुने हुए बिंदु $P, Q, R, S$ क्रमश: इस प्रकार हैं कि $PQ$ और $R S$ लंबकोणीय प्रतिच्छेदी रेखाएँ हैं । यदि $P Q=\frac{3 \sqrt{3}}{4}$ है, तो $R S$ का मान होगा :
$\frac{2}{\sqrt{3}}$
$\frac{3 \sqrt{3}}{4}$
$\frac{\sqrt{2}+1}{2}$
$4-2 \sqrt{2}$
वर्ग का एक विकर्ण $8x - 15y = 0$ के अनुदिश है एवं इसका एक शीर्ष $(1, 2)$ है, तो इस शीर्ष से गुजरने वाली वर्ग की भुजाओं के समीकरण हैं
यदि किसी समबाहु त्रिभुज का केन्द्रक $(0, 0)$ एवं एक भुजा $x + y - 2 = 0$ हो, तो उसका एक शीर्ष होगा
किसी चतुभ्र्ज की भुजाओं $AB,BC,CD$ व $DA$ के समीकरण क्रमश: $x + 2y = 3,\,x = 1,$ $x - 3y = 4,\,$ $\,5x + y + 12 = 0$ हैं, तो विकर्ण $AC$ व $BD$ के बीच कोण ......$^o$ होगा
त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
एक बिन्दु $P$, रेखा $2 x -3 y +4=0$ पर गति करता है। यदि $Q (1,4)$ तथा $R (3,-2)$ निशिचत बिन्दु हैं, तो $\triangle PQR$ के केन्द्रक का बिन्दुपथ (locus) एक रेखा है